

XIV Olimpiada Nacional de Astronomía en México

Primera Etapa ---- Examen Secundaria

1.	La masa de un exoplaneta es 10 veces la masa de la Tierra y su radio es 5 veces el radio de la
	Tierra. ¿Cuál es la gravedad superficial del planeta en términos de la gravedad g de la Tierra?

- a) 2 g
- b) 4 g
- c) 0.4 g
- d) 0.2 g
- 2. En la superficie de la luna un astronauta arma un péndulo y mide un periodo de oscilación de 4.91 s. ¿De qué longitud es la cuerda del péndulo?
 - a) 50 cm
 - c) 75 cm
 - b) 100 cm
 - c) 150 cm
- 3. Una estación de radio trasmite a una frecuencia de 140 MHz. ¿A qué longitud de onda se debe sintonizar un receptor para captar la señal?
 - a) 2.82 m
 - b) 2.00 m
 - c) 1.82 m
 - d) 2.14 m
- 4. La ciudad de Culiacán, Sinaloa está a una longitud geográfica aproximada de 107° oeste mientras la ciudad de Puebla, Puebla, está en una longitud aproximada de 98° oeste.
 - i) ¿En cuál de estas ciudades se ve que la estrella Sirio culmine (alcance su altura máxima) primero? Explique su respuesta.
 - ii) Una vez Sirio culmine para un observador en Puebla, ¿cuánto tiempo tendrá que esperar una persona en Culiacán para ver a Sirio en culminación?
 - a) 29 minutos
 - b) 36 minutos
 - c) 40 minutos
 - d) 43 minutos

5.	Suponga	que	las	órbitas	de	un	sistema	binario	son	circulares.	Con	observaciones
	espectros	cópica	as se	determin	na qu	ıe la	estrella 1	tiene una	velo	cidad radial	máxin	na de 75 km/s y
	la estrella	2 tier	ne un	ia velocid	ad ra	adial	máxima d	de 100 km	ı/s. Si	el período o	orbital	es de tres días,
	¿cuál es la masa total del sistema en masas solares?											
	Considere	e que l	la rel	ación ent	re el	per	iodo P de	l sistema	con la	velocidad r	adial v	v _i y el semie-eje

mayor a_i de cada estrella es Pv_i = $2\pi a_i$ tal que, el semi-eje mayor del sistema es a= a_1 + a_2 .

- a) 1.67 M_☉
- b) 1.23 M_☉
- c) 1.97 M_☉
- d) $2.10~{\rm M}_{\odot}$
- 6. Un motor de cohete tiene un empuje promedio de 5.26 N. Tiene una masa inicial de 25.5 g que incluye una masa de combustible de 12.7 g. La duración de la combustión es de 1.90 s. Este motor se coloca en el cuerpo de un cohete de 53.5 g de masa. Encuentre la velocidad final del cohete si es disparado en el espacio exterior a partir del reposo por un astronauta durante una caminata espacial? Suponga que el combustible se quema a razón constante.
 - a) 787 m/s
 - b) 668 m/s
 - c) 700 m/s
 - d) 878 m/s
- 7. El telescopio de refracción Yerkes tiene una lente objetivo de 1.00 m de diámetro y una distancia focal de 20.0 m. Suponga que es utilizado con una lente ocular de 2.5 cm de distancia focal. Determine la amplificación del planeta Marte visto a través de este telescopio.
 - a) -400
 - b) -800
 - c) -40
 - d) -80
- 8. Una manera de mandar una nave espacial a Marte sería empleando una órbita elíptica donde la Tierra es el perihelio y Marte el afelio. Asumiendo que Marte gira alrededor del Sol en una órbita circular de radio 1.51 UA. ¿Cuánto tiempo le tomaría a la nave llegar a Marte?
 - a) 2 años
 - b) 1.414 años
 - c) 0.794 años
 - d) 0.707 años